Genome-wide association study of the de novo synthesized milk fatty acids based on the Dutch, Danish and Chinese Holstein

Grum Gebreyesus, A. J. Buitenhuis, N. A. Poulsen, M. W. Visker, Q. Zhang, H. van Valenberg, D. Sun, and H. Bovenhuis

Background

- Fatty acids (FAs) in milk originate through:
 - Direct transfer from the feed
 - Mobilization of body fat reserve
 - De novo synthesis in the mammary gland
- Substantial genetic variation in de novo synthesized FAs
- Identifying genomic regions essential step for better understanding of the underlying genetics

Background....

- Expensive to measure traits
- In GWA studies, small data => low power
- Combine data from different population?
- "Mega-analysis" in association studies for human diseases
- Challenges
 - Difference in LD structures?
 - GxE?

Objectives

Identify genomic regions for de novo synthesized milk
FAs in the Dutch, Danish and Chinese Holstein

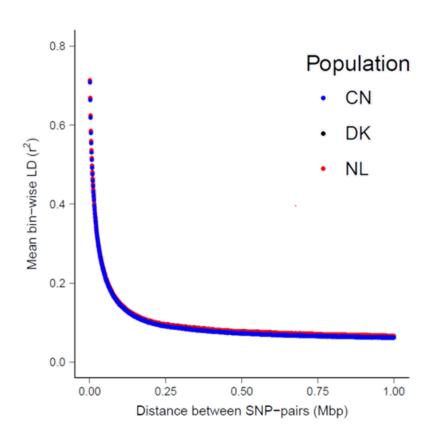
 Advantages and challenges of combining datasets for joint GWA studies

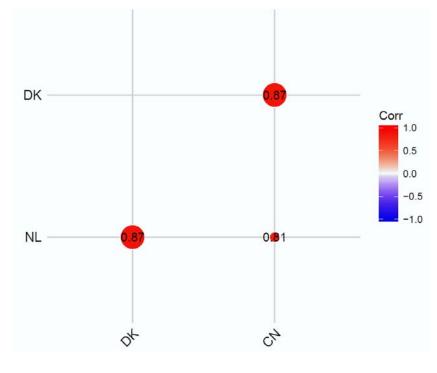
Samples and methods

- GC samples on C8:0, C10:0, C12:0, C14:0 and C14:1
- 600 Danish, 1600 Dutch and 700 Chinese Holstein cows
- Bin-wise LD (r²) for pair of SNPs in 1Mbp bin for LD consistency
- Linear mixed model (GCTA program)

$$- y_{ijkl} = \mu + par_i + herd_j + b_1 * DIM_{ijkl} + b_2 * SNP_k + g_l + e_{ijkl}$$

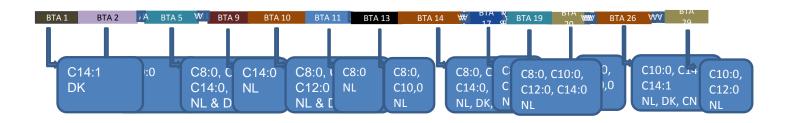
- FDR < 5% (~ -log10p-value 5.0)
- Determine multiple regions in a chromosome fitting "LeadSNPs" as fixed effect


Results


Phenotypic means

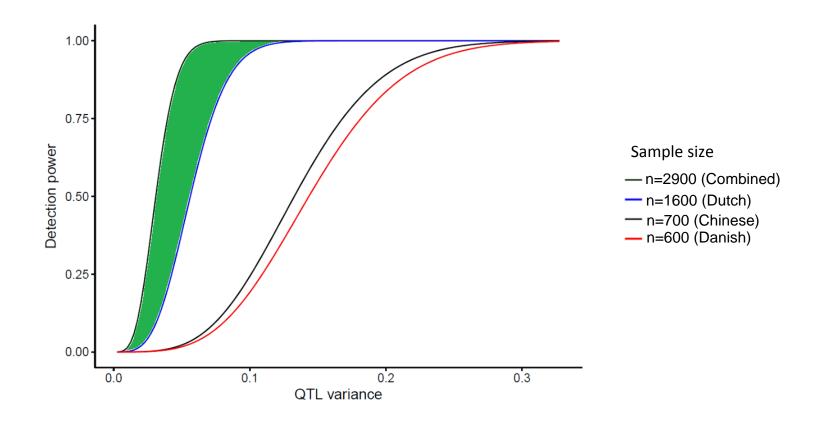
Trait	NL	DK	CN	
C8:0	1.31	1.47	0.58	
C10:0	2.87	3.22	2.22	
C12:0	3.79	3.69	2.94	
C14:0	11.1	11.6	10.0	
C14:1	1.38	1.01	0.86	

LD and **MAF** correlations

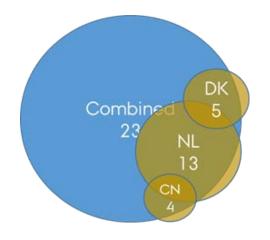


Correlation in MAF

Population-specific GWAS


Several regions with significant association (mainly Dutch sample)

 In Chinese and Danish sample, significant association detected only for C14:1



Additional regions from combined GWAS

Additional regions from combined GWAS

- 11 additional regions detected from combined analysis
- More fatty acids also significantly associated for regions already detected in population-specific analysis

Combined GWAS...

Additional regions were on chromosomes 2, 5, 7, 12 and 15

Regions on chromosomes 2 and 5:

Region	Position (Mbp)	Associated fatty acids	Genes in region
2a	12.5 – 19.8	C8:0, C10:0	OSBPL6
2b	54.9 - 59.6	C14:1	
2c	106.5 – 135.6	C12:0	MECR, ACSL3, MOGAT1
5a	65.7 – 82.8	C8:0, C10:0	
5b	87.4 - 99	C8:0, C10:0, C12:0, C14:1	SMCO3, LRP6, MGST1

Conclusion

- Several regions contribute to genetic variation in milk fatty acid composition
- Promising regions on chromosomes 2 and 5
- Combining related populations enabled detection of regions that couldn't pass threshold in population-specific GWAS

Thank you

